

EPCOS - Power Quality Solutions

Power Factor Correction & Harmonic Filter

Loads create disturbances

Harmonics Reactive power Unsymmetrical load Flicker

Modern drives a main source for harmonics

EPCOS

Examples for poor power quality

Adjustable Speed Drives

Flat topping of Drive input voltage, heavily distorted current

Notching on the input can interfere with other loads on the same branch circuit

Past - load: most loads were "linear"

- Induction-motors, heating, bulbs
- voltage was followed by current only a few problems

Features	Customer benefits
 Simple and rugged design 	 High reliability Long lifetime Favourably-priced
No commutator	 Unrestricted operation for partial- and overload conditions
	 Low maintenance (only the bearings)
High degree of protection	- Can be universally used

Changing load structure

Today's - loads: most loads act "non linear" Loads having non linear voltage-current characteristics are called non linear loads. When connected to a sinusoidal voltage, these loads produce non sinusoidal currents.

Non linear devices can be classified into three major categories:

- 1. Power Electronics: e.g. rectifiers, variable speed drives, UPS, ...
- 2. Ferromagnetic devices: (non linear magnetizing characteristics)
- 3. Arcing devices: Arcing devices, e.g. arc furnace equipment, generate harmonics due to the non linear characteristics of the arc itself.

Problems caused by HARMONICS

- Overheating of transformers (K-Factor), and rotating equipment
- Neutral overloading / unacceptable neutral-to-ground voltages
- Failed capacitor banks
 - Breakers and fuse tripping
- Unreliable operation of electronic equipment, and generators
- Erroneous register of electric meters
- Wasted energy / higher electric bills KWD & KWH
- Wasted capacity Inefficient distribution of power
- Increased maintenance cost of equipment and machinery

Standards, e.g. EN50160

Harmonic voltage The THD of the supply voltage (including all harmonics up to the order 40) shall be less than or equal to 8%.

Table 1: Values of individual harmonic voltages at the supply terminals for orders up to 25 given in percent of U_n

	Even bermenies							
Not multi	ples of 3	Multip	les of 3					
Order h	Relative voltage	Order h	Relative voltage	Order h	Relative voltage			
5 7 11 13 17 19 23 25	6 % 5 % 3,5 % 3 % 2 % 1,5 % 1,5 %	3 9 15 21	5 % 1,5 % 0,5 % 0,5 %	2 4 624	2 % 1 % 0,5 %			
NOTE: No values are given for harmonics of order higher than 25, as they are usually small, but largely unpredictable due to recompany offects								

HARMONICS fed back by 6/12 pulse rectifier

Example for single phase Non-Linear load

Example of a non-linear load: Switched mode power supply

3rd harmonic in the neutral conductor

In a 3-phase-system with neutral conductor, 3rd harmonics will sum up in the neutral conductor..

Harmonics of 3rd order of each conductor are in phase.

3rd harmonic in the neutral conductor

IN A COMMERCIAL BANK (KL)

PHASE	50HZ CURRENT	3RD HARMONIC CURRENT			
R	68A	42A			
Y	66A	40A			
B	67A	40A			
N	2A	T			

3rd harmonic in the neutral conductor

Neutral conductor sizing IEC standard 60364-52

COST caused by HARMONICS

- Higher energy consumption
- Higher downtime of production equipment
 - Higher maintenance and repair cost
 - Reduced product quality
 - Reduced production output
- Investment for stronger equipments/components

or

Solution: One time investment for harmonic filter

Summary

- Consumer structure has changed from linear to non linear loads
- Harmonics in the net are increasing
- Increasing unknown energy losses
- Unknown overloads
- Problems in the net become more complex
- Beside convent. PFC, filters become more and more important
- De-tuned filters for most applications
- Active filters for a niche market

Resonance

Most critical are applications in which the application configuration (PFC capacitor and transformer) form a resonance circuit with a frequency close to existing harmonic frequencies. In such a case harmonic currents stimulate the resonance circuit and create resonance amplification with harmful over voltages and over currents.

Parallel resonance

What happens in case of parallel resonance?

- 1) I_v is constant and imprinted
- 2) Impedance $Z \rightarrow \infty$

1) + 2) \Rightarrow voltage U $\rightarrow \infty$ (ohmic law)

3) With $U \rightarrow \infty \Rightarrow I_c = I_L \rightarrow \infty$

Parallel resonance: example

Parallel resonance: example

Resonance?

Harmonics MAGNIFICATION

No PFC capacitors

Real case of parallel resonance in KL/Malaysia

Remedial measures

- Increase fault level (reduction of impedances)
- Limiting total output of harmonic sources
- Limit number of simultaneously operating harmonic sources
- Balanced connection of 1-phase loads to the 3-phases
- Pull in extra neutral wires
- Isolated ground separated from the safety ground
- Using equipment with higher pulse number
- De-tuned HARMONIC filters
- Tuned filter circuits
- Active harmonic filter

Reducing Voltage Distortion by Circuit Separation

Harmonic Mitigating Solutions

Active Filters

Hybrid Filters

Tuned Filters

14% Detuned Filters

7% Detuning Filters

Cost

Technology

De-tuned harmonic filter

Kvar: 400

Previous Example, now for 7%-detuned filter

Resulting harmonic voltage e.g. :

7th (350Hz): 0.045 Ohm - 103A = 4.6V → 1.1%

Customer benefits of <u>detuned</u> filters

- Improvement of Power Factor
- Reduction of harmonics
- Reduction of ohmic losses, real kW energy savings
- Elimination of power utilities penalties on low power factor
- Power Quality improvement
- Climatic protection, reduction of greenhouse gas emissions
- Reduction of new investment for distribution equipment (transformers, LV switchgear)
- Reduction of equipment maintenance cost and down time of production equipment
- Improvement of production process stability

Summary: detuned filter

Summary: detuned filter

- Resonance frequency not close to any harmonic
- Filter frequency $f_{filter} < f_{harmonic}$
- A certain reduction of harmonic distortion
- Export of some harmonics content to the HV-system
- Capacitors are blocked against resonance, therefore de-tuned

filters are also known as anti-resonance- filter

Power factor correction & Filtering harmonics (cleaning the grid)

MEASURED CASE

IN A COMMERCIAL BANK (KL)

	NET CURRENT							
ORDER OF HARMONIC	WITHOUT FILTER A	WITH 5th FILTER A	WITH 5th, 7th FILTERS A	WITH ALL FILTERS A				
1	1100	866	802	755				
3	33	47	44	44				
5	172	19	18	18				
7	96	73	12	11				
11	34	11	6	2				
VTHD	5 3%	2 3%	1.0%	0.7%				

A typical tuned filter bank at 50Hz fundamental frequency consists of :

- 1 filter for the 5th harmonic (250Hz), tuned to 245 Hz
- 1 filter for the 7th harmonic (350Hz), tuned to 345 Hz
- 1 filter for the 11th harmonic (550Hz), tuned to 545 Hz

Previous Example, now for a TUNED FILTER

Resulting harmonic voltage e.g.:

5th (250Hz): 0.01 Ohm -144 A = 1.4V → 0.4%

7th (350Hz): 0.01 Ohm -103 A = 1.0V → 0.2%

Summary: tuned filter

- Resonance frequencies of the series filter circuits are very close to
 existing harmonics
- Excellent reduction of harmonics on the bus bars
- Capacitors are charged with high harmonic currents
 - ➔ "cleaning" of the network
- No export of additional harmonic load to the HV-system
- ➔ "torture" for the capacitors, if they are not rated for this high effective current
- Risk of sucking-off harmonic currents from HV side!!

Summary: tuned filter

Impedance

FINAL COMPARISON:

Remaining harmonic voltage level, for instance for the 7th harmonic:

- Capacitor bank
 without reactors: 12.7%
- 7% detuned filter:
- tuned filter:

1.1%

0.2%

Please fill-in:			
A) Required capacitor bank data:			
rated voltage		VAC	
frequency		Hz	
rated output		kvar	
output divided into *		x	kvar
+		x	kvar
+	2	x	kvar
+		x	kvar
detuning factor p		%	
or resonance frequency fres		Hz	
cable support from the bottom ("X")		1	
or cable support from the top ("X")			
Protection class, INDOOR	IP		
Standard: IP31, except all parts for ventilation			

Filter circuit reactors

Technical features

Standard-Series

- <u>Effective filter output</u>
 5 kVar ... 100 kVA
- Filtering factor 5,67 % - 7 % -14 %
- Rated voltage 3AC 400 V

Advantages at a glance

Highest Linearity

Inductively designed for I eff, thermally permanent with 1,05 x I _{eff} overload-proved

Temperature switch in standard-series

With mounting plate according to EN 60852, for use of electrical screwdrivers

International approvals

Highest life time by high quality materials

Component selection chart

Grid: V = 400 V**, f = 50 Hz; 480 V Capacitors / 5.67% detuning

	Effective filter output	Voltage increase on capacitor	Selected Capacitor voltage (min.)	Capacitor output	Calculated capacitance	Reactor inductivity	Capacitor	Reactor	Contactor	Cable* cross section	Fuse*** rating
%	kvar	V	V	kvar	3*µF	mH	ord. code	ord. code	ord. code	mm ²	A
5.67	5.00	424	480	6.79	31.29	6.126	B25667- A5966-A375	B44066- D5005-S400	B44066- S1610-J123	4	16
5.67	10.00	424	480	13.58	62.59	3.063	B25667- A5197-A375	B44066- D5010-S400	B44066- S1610-J123	6	25
5.67	12.50	424	480	16.98	78.23	2.450	B25667- A4237-A355	B44066- D5012-S400	B44066- S1610-J123	10	35
5.67	25.00	424	480	33.96	156.47	1.225	B25667- A4287-A375 A4177-A365	B44066- D5025-S400	B44066- S3010-J123	16	63
5.67	50.00	424	480	67.92	312.93	0.613	2xB25667- A4287-A375 + A4347-A365	B44066- D5050-S400	B44066- S6010-J123	35	125
5.67	60.00	424	480	81.50	375.52	0.510	4 xB25667- A4287-A375	B44066- D5060-S400	B44066- N/A	50	160
5.67	100.00	424	480	135.84	625.86	0.306	4 xB25667- A4287-A375 + 2 xA4347-A365	B44066- D5100-S400	B44066- N/A	70	250

EPCOS PFC

- 1 Reduces KW Demand
- 2 Reduces KWH Consumption

Up to 34% Savings

Less than 2 Year Payback

Savings

- 3 Eliminates Power Factor Penalty
- 4 Reduces Monthly Electricity Bill
- 5 Reduces Maintenance & Downtime

- 1 Improves Voltage
- 2 Balances Three Phases
- 3 Filters Surges, Transients
- 4 Filters Harmonics
- 5 Improves Power Factor

Reduced Downtime & Maintenance **Satisfied** Customer